Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-(2-Iodophenylmethyl)hexamethylenetetraminium bromide dihydrate

Richard Betz and Peter Klüfers*

Ludwig-Maximilians-Universität, Department Chemie und Biochemie, Butenandtstrasse 5–13, 81377 München, Germany Correspondence e-mail: klueí@cup.uni-muenchen.de

Received 2 October 2007; accepted 3 October 2007

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.004 Å; R factor = 0.026; wR factor = 0.061; data-to-parameter ratio = 18.6.

The title compound, $C_{13}H_{18}IN_4^+ \cdot Br^- \cdot 2H_2O$, is a quaternary ammonium salt derived from 2-iodobenzyl bromide and hexamethylenetetramine. Two water molecules per asymmetric unit act as hydrogen-bond donors to the bromide anion. Direct cation–anion contacts are established *via* C–H donors, mainly from methylene groups in the α position to the ammonium centre.

Related literature

For synthesis of the title compound, see Angyal *et al.* (1949). For the crystal structure of a related compound, see Shao *et al.* (1982).

Experimental

Crystal data

 $\begin{array}{l} C_{13}H_{18}IN_4^+ \cdot Br^- \cdot 2H_2O \\ M_r = 473.15 \\ Triclinic, P1 \\ a = 9.084 \ (4) \ \text{\AA} \\ b = 9.500 \ (5) \ \text{\AA} \\ c = 10.495 \ (7) \ \text{\AA} \\ \alpha = 69.28 \ (5)^\circ \\ \beta = 75.47 \ (5)^\circ \end{array}$

Data collection

Nonius KappaCCD diffractometer Absorption correction: numerical [crystal faces optimized with X-SHAPE (Stoe & Cie, 1997) and absorption correction with X-
$$\begin{split} \gamma &= 83.76 \ (4)^{\circ} \\ V &= 819.8 \ (8) \ \text{\AA}^3 \\ Z &= 2 \\ \text{Mo } K\alpha \text{ radiation} \\ \mu &= 4.40 \ \text{mm}^{-1} \\ T &= 200 \ (2) \ \text{K} \\ 0.28 \ \times \ 0.15 \ \times \ 0.14 \ \text{mm} \end{split}$$

 $\begin{array}{l} RED \; (\text{Stoe \& Cie, 1997})] \\ T_{\min} = 0.409, \; T_{\max} = 0.610 \\ 10405 \; \text{measured reflections} \\ 3820 \; \text{independent reflections} \\ 2865 \; \text{reflections with} \; I > 2\sigma(I) \\ R_{\text{int}} = 0.032 \end{array}$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.061$ S = 0.953820 reflections 205 parameters 6 restraints H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.50 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -1.07 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

,	(,)	-		
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1-H11···Br	0.77 (3)	2.53 (3)	3.297 (4)	172 (3)
$O1-H12 \cdot \cdot \cdot N3^{i}$	0.77 (3)	2.72 (3)	3.390 (5)	146 (4)
O2−H21···Br	0.78 (3)	2.61 (3)	3.381 (4)	168 (4)
O2−H22···Br ⁱⁱ	0.79 (3)	2.65 (3)	3.433 (4)	174 (3)
C3-H3···I ⁱⁱⁱ	0.95	3.31	4.237 (4)	166
$C5-H5\cdots Br^{iv}$	0.95	3.05	3.924 (4)	153
$C6 - H6 \cdot \cdot \cdot N4^{v}$	0.95	2.73	3.558 (5)	146
C7−H72···Br	0.99	2.99	3.872 (4)	149
$C8 - H82 \cdots O1^{v}$	0.99	2.78	3.640 (5)	145
$C9-H91\cdots O2^{vi}$	0.99	2.40	3.326 (5)	156
C10−H101···Br	0.99	2.97	3.875 (4)	153
$C10-H102\cdots O2^{vii}$	0.99	2.47	3.459 (5)	174
$C12-H121\cdots O1^{v}$	0.99	2.78	3.643 (5)	146
C12−H122···Br	0.99	3.07	3.952 (4)	149
$C13-H131\cdots O1^{v}$	0.99	2.56	3.481 (5)	154

Symmetry codes: (i) -x, -y + 1, -z; (ii) -x, -y, -z + 1; (iii) -x + 1, -y + 2, -z + 1; (iv) x + 1, y, z; (v) -x + 1, -y + 1, -z; (vi) x, y + 1, z - 1; (vii) -x, -y + 1, -z + 1.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2005); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2005); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996) and *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 1990).

The authors thank Dr Peter Mayer and Sandra Albrecht for professional support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2048).

References

- Angyal, S. J., Morris, P. J., Rassack, R. C. & Waterer, J. A. (1949). J. Chem. Soc. pp. 2704–2706.
- Burnett, M. N. & Johnson, C. K. (1996). *ORTEPIII*. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Version 1.171.27p5 beta. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
Shao, M., Wang, L., Zheng, X. & Tang, Y. (1982). Acta Chim. Sin. 40, 223–232.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (1990). Acta Cryst. A46, C34.

Stoe & Cie (1997). X-RED (Version 1.09) and X-SHAPE (Version 1.02). Stoe & Cie, Darmstadt, Germany.

Acta Cryst. (2007). E63, o4279 [doi:10.1107/S1600536807048623]

N-(2-Iodophenylmethyl)hexamethylenetetraminium bromide dihydrate

R. Betz and P. Klüfers

Comment

In the quaternary ammonium salt, hexamethylenetetramine is *N*-alkylated by an *ortho*-iodobenzyl moiety. The positive charge of the ammonium centre atom is counterbalanced by a bromide ion (Fig. 1). Intramolecular bond lengths and angles are normal.

The bromide ions are embedded into an environment of 7 hydrogen–bond donors (CIF: the _geom_special_details item for the applied criteria). One hemisphere around the anion contains three O—H donors, the other hemisphere is established by four C—H···Br contacts. Of these, three bonds have methylene functions as donors which are in α -position to the quaternary ammonium centre (Fig. 1), the fourth stemming from a phenyl–CH. The O2 donors are part of OH₂Br₂H₂O rhombs (Fig. 2). All the water molecules are close to the boundary planes of the chosen unit cell. There are no hydrogen–bonded contacts between water molecules. Instead, the acceptor functions of the O atoms are occupied by C—H donors. Again, there is a predominance of α -methylene donors. The acceptor capability of the amine–N atoms is less pronounced than that of the anion and the water–O atoms. There are relatively long bonds from water (N3) and phenyl–CH donors (N4), whereas N2 is not found as an acceptor within the applied criteria.

Experimental

The title compound was obtained as an intermediate in the synthesis of *ortho*–iodomandelic acid according to a published procedure (Angyal *et al.*, 1949) upon addition of *ortho*–iodobenzyl bromide to a solution of hexamethylenetetramine in chloroform. Crystals suitable for X–ray analysis were obtained upon the cooling of a saturated aqueous solution to 277 K.

Refinement

The H atoms on C atoms were located in a difference map and refined as riding on their parent atoms with a common U_{iso} value. The H atoms on the water molecules were located in a difference map and refined with a common O—H distance and a constant 105° bond angle. A common U_{iso} value was refined for the O–bonded H atoms. Position of the residual peak - deepest hole, $-1.07 \text{ e } \text{Å}^{-3}$ at 0.3169 0.8397 0.5303 with the distance 0.82Å from I.

Figures

Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level. Hydrogen atoms are presented as a spheres of arbitrary radius. Hydrogen bonds are indicated as dashed lines.

Fig. 2. The packing of title compound, viewed along [0 1 0]. Some of the hydrogen bonds with water donors are drawn as dashed lines.

N-(2-Iodophenylmethyl)hexamethylenetetraminium bromide dihydrate

Crystal data

$C_{13}H_{18}IN_4^+ \cdot Br^- \cdot 2H_2O$	$V = 819.8 (8) \text{ Å}^3$
$M_r = 473.15$	Z = 2
Triclinic, <i>P</i> T	$F_{000} = 464$
Hall symbol: -P 1	$D_{\rm x} = 1.917 {\rm Mg m}^{-3}$
a = 9.084 (4) Å	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
b = 9.500 (5) Å	$\theta = 3.8 - 27.5^{\circ}$
c = 10.495 (7) Å	$\mu=4.40~mm^{-1}$
$\alpha = 69.28 (5)^{\circ}$	T = 200 (2) K
$\beta = 75.47 \ (5)^{\circ}$	Block, colourless'
$\gamma = 83.76 \ (4)^{\circ}$	$0.28\times0.15\times0.14~mm$

Data collection

Nonius KappaCCD diffractometer	3820 independent reflections
Radiation source: Fine-focus sealed tube	2865 reflections with $I > 2\sigma(I)$
Monochromator: Graphite	$R_{\rm int} = 0.032$
T = 200(2) K	$\theta_{\rm max} = 27.6^{\circ}$
ω scans	$\theta_{\min} = 3.8^{\circ}$
Absorption correction: numerical [crystal faces optimized with X-SHAPE (Stoe & Cie, 1997) and absorption correction with X-RED (Stoe & Cie, 1997)]	$h = -11 \rightarrow 11$
$T_{\min} = 0.409, \ T_{\max} = 0.610$	$k = -12 \rightarrow 12$

10405 measured reflections	$l = -13 \rightarrow 13$		
Refinement			
Refinement on F^2	Secondary atom site location: difference Fourier map		
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites		
$R[F^2 > 2\sigma(F^2)] = 0.026$	H atoms treated by a mixture of independent and constrained refinement		

 $wR(F^2) = 0.061$

S = 0.95

3820 reflections

205 parameters

6 restraints

Primary atom site location: structure-invariant direct methods

Special details

Geometry. The hydrogen–bond list was generated with the *PLATON* command "hbond 1.. 4 140", *i.e.*, D…A is less than the sum of the vdW radii + 1 Å, H…A is less than the sum of the vdW radii + 0.4 Å, the D—H…A angle is greater than 140°.

 $w = 1/[\sigma^2(F_0^2) + (0.0335P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.50 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -1.07 \text{ e } \text{\AA}^{-3}$

Extinction correction: none

	x	у	Z	$U_{\rm iso}*/U_{\rm eq}$
Ι	0.33565 (2)	0.89354 (2)	0.44815 (2)	0.03398 (8)
Br	0.09573 (4)	0.28677 (3)	0.33816 (3)	0.03467 (9)
01	0.2401 (3)	0.2543 (4)	0.0283 (3)	0.0676 (9)
H11	0.199 (4)	0.258 (5)	0.101 (3)	0.063 (7)*
H12	0.177 (3)	0.274 (5)	-0.013 (4)	0.063 (7)*
O2	0.0335 (3)	0.0367 (3)	0.6679 (3)	0.0435 (6)
H21	0.037 (5)	0.088 (4)	0.590 (3)	0.063 (7)*
H22	-0.001 (4)	-0.038 (3)	0.672 (4)	0.063 (7)*
N1	0.2986 (2)	0.7033 (2)	0.1572 (2)	0.0182 (5)
N2	0.3446 (3)	0.9209 (3)	-0.0563 (3)	0.0279 (5)
N3	0.1101 (3)	0.7836 (3)	0.0132 (3)	0.0250 (5)
N4	0.3522 (3)	0.6716 (3)	-0.0710 (2)	0.0268 (5)
C1	0.4668 (3)	0.6402 (3)	0.3306 (3)	0.0206 (6)
C2	0.5020 (3)	0.7436 (3)	0.3847 (3)	0.0216 (6)
C3	0.6450 (3)	0.7475 (3)	0.4062 (3)	0.0265 (6)
H3	0.6666	0.8194	0.4427	0.0245 (18)*
C4	0.7556 (3)	0.6472 (4)	0.3748 (3)	0.0289 (7)
H4	0.8546	0.6511	0.3880	0.0245 (18)*
C5	0.7247 (3)	0.5399 (3)	0.3240 (3)	0.0275 (6)
H5	0.8014	0.4696	0.3036	0.0245 (18)*
C6	0.5811 (3)	0.5368 (3)	0.3035 (3)	0.0244 (6)
H6	0.5594	0.4623	0.2702	0.0245 (18)*

Fractional atomic coordinates and isotrop	pic or equivalen	nt isotropic displacement	t parameters ($(Å^2)$
---	------------------	---------------------------	----------------	---------

C7	0.3114 (3)	0.6314 (3)	0.3075 (3)	0.0220 (6)
H71	0.2364	0.6808	0.3655	0.0245 (18)*
H72	0.2844	0.5241	0.3404	0.0245 (18)*
C8	0.3672 (3)	0.8595 (3)	0.0848 (3)	0.0242 (6)
H81	0.3181	0.9267	0.1377	0.0245 (18)*
H82	0.4773	0.8525	0.0824	0.0245 (18)*
C9	0.1816 (3)	0.9313 (3)	-0.0520 (3)	0.0299 (7)
H91	0.1664	0.9774	-0.1485	0.0245 (18)*
H92	0.1312	0.9979	0.0013	0.0245 (18)*
C10	0.1299 (3)	0.7186 (3)	0.1554 (3)	0.0217 (6)
H101	0.0833	0.6181	0.2001	0.0245 (18)*
H102	0.0775	0.7833	0.2099	0.0245 (18)*
C11	0.1891 (3)	0.6848 (3)	-0.0663 (3)	0.0275 (6)
H111	0.1444	0.5836	-0.0218	0.0245 (18)*
H112	0.1736	0.7264	-0.1629	0.0245 (18)*
C12	0.3752 (3)	0.6060 (3)	0.0696 (3)	0.0230 (6)
H121	0.4855	0.5965	0.0666	0.0245 (18)*
H122	0.3323	0.5039	0.1134	0.0245 (18)*
C13	0.4181 (3)	0.8223 (3)	-0.1354 (3)	0.0307 (7)
H131	0.5284	0.8137	-0.1383	0.0245 (18)*
H132	0.4053	0.8669	-0.2327	0.0245 (18)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ι	0.02658 (11)	0.03900 (13)	0.04832 (15)	0.00253 (8)	-0.00951 (9)	-0.02950 (11)
Br	0.03848 (18)	0.02750 (17)	0.0393 (2)	-0.00699 (13)	-0.01011 (14)	-0.01016 (14)
01	0.0583 (19)	0.099 (3)	0.053 (2)	-0.0062 (18)	-0.0106 (14)	-0.0341 (19)
02	0.0603 (16)	0.0328 (13)	0.0465 (16)	-0.0065 (12)	-0.0284 (14)	-0.0117 (12)
N1	0.0171 (11)	0.0205 (11)	0.0178 (12)	-0.0020 (9)	-0.0049 (9)	-0.0062 (9)
N2	0.0337 (14)	0.0234 (13)	0.0271 (14)	-0.0051 (11)	-0.0131 (11)	-0.0036 (11)
N3	0.0250 (12)	0.0236 (12)	0.0328 (14)	0.0027 (10)	-0.0137 (11)	-0.0132 (11)
N4	0.0303 (13)	0.0309 (14)	0.0244 (13)	0.0048 (11)	-0.0106 (11)	-0.0141 (11)
C1	0.0197 (13)	0.0240 (14)	0.0157 (14)	-0.0038 (11)	-0.0027 (11)	-0.0039 (11)
C2	0.0194 (13)	0.0235 (14)	0.0219 (15)	-0.0032 (11)	-0.0028 (11)	-0.0083 (12)
C3	0.0235 (14)	0.0319 (16)	0.0268 (16)	-0.0071 (12)	-0.0045 (12)	-0.0124 (13)
C4	0.0192 (14)	0.0404 (17)	0.0244 (16)	-0.0029 (13)	-0.0054 (12)	-0.0066 (13)
C5	0.0277 (15)	0.0308 (16)	0.0217 (16)	0.0086 (13)	-0.0065 (12)	-0.0082 (13)
C6	0.0313 (15)	0.0227 (14)	0.0217 (15)	0.0006 (12)	-0.0073 (12)	-0.0100 (12)
C7	0.0231 (14)	0.0263 (14)	0.0182 (14)	-0.0067 (11)	-0.0057 (11)	-0.0073 (12)
C8	0.0302 (15)	0.0172 (13)	0.0273 (16)	-0.0069 (12)	-0.0096 (12)	-0.0063 (12)
C9	0.0378 (17)	0.0227 (15)	0.0321 (18)	0.0041 (13)	-0.0164 (14)	-0.0085 (13)
C10	0.0172 (13)	0.0216 (14)	0.0301 (16)	0.0003 (11)	-0.0070 (11)	-0.0124 (12)
C11	0.0326 (16)	0.0302 (16)	0.0275 (16)	0.0027 (13)	-0.0135 (13)	-0.0157 (13)
C12	0.0264 (14)	0.0239 (15)	0.0227 (15)	0.0062 (12)	-0.0066 (12)	-0.0141 (12)
C13	0.0287 (15)	0.0400 (18)	0.0196 (16)	-0.0036 (13)	-0.0053 (12)	-0.0050 (13)

Geometric parameters (Å, °)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9500 387 (4) 9500 379 (4) 9500 9500 9900 9900 9900 9900 9900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	387 (4) 9500 379 (4) 9500 9500 9900 9900 9900 9900 9900
O2-H210.78 (2)C4-H40.9O2-H220.78 (2)C5-C61.3N1-C71.510 (3)C5-H50.9N1-C121.525 (3)C6-H60.9N1-C81.527 (4)C7-H710.9N1-C101.528 (3)C7-H720.9N2-C81.446 (4)C8-H810.9N2-C91.464 (4)C8-H820.9N2-C131.466 (4)C9-H910.9N3-C101.449 (4)C9-H920.9	9500 379 (4) 9500 9500 9900 9900 9900 9900 9900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 379 (4) 9500 9500 9900 9900 9900 9900 9900 9900 9900
N1—C71.510 (3)C5—H50.9N1—C121.525 (3)C6—H60.9N1—C81.527 (4)C7—H710.9N1—C101.528 (3)C7—H720.9N2—C81.446 (4)C8—H810.9N2—C91.464 (4)C8—H820.9N2—C131.466 (4)C9—H910.9N3—C101.449 (4)C9—H920.9	9500 9500 9900 9900 9900 9900 9900
N1—C121.525 (3)C6—H60.9N1—C81.527 (4)C7—H710.9N1—C101.528 (3)C7—H720.9N2—C81.446 (4)C8—H810.9N2—C91.464 (4)C8—H820.9N2—C131.466 (4)C9—H910.9N3—C101.449 (4)C9—H920.9	9500 9900 9900 9900 9900 9900
N1—C81.527 (4)C7—H710.9N1—C101.528 (3)C7—H720.9N2—C81.446 (4)C8—H810.9N2—C91.464 (4)C8—H820.9N2—C131.466 (4)C9—H910.9N3—C101.449 (4)C9—H920.9	9900 9900 9900 9900 9900
N1—C101.528 (3)C7—H720.9N2—C81.446 (4)C8—H810.9N2—C91.464 (4)C8—H820.9N2—C131.466 (4)C9—H910.9N3—C101.449 (4)C9—H920.9	9900 9900 9900 9900
N2—C81.446 (4)C8—H810.9N2—C91.464 (4)C8—H820.9N2—C131.466 (4)C9—H910.9N3—C101.449 (4)C9—H920.9	9900 9900 9900
N2—C91.464 (4)C8—H820.9N2—C131.466 (4)C9—H910.9N3—C101.449 (4)C9—H920.9	.9900 .9900
N2—C131.466 (4)C9—H910.9N3—C101.449 (4)C9—H920.9	9900
N3—C10 1.449 (4) C9—H92 0.9	0000
	9900
N3—C9 1.468 (4) C10—H101 0.9	.9900
N3—C11 1.483 (3) C10—H102 0.9	.9900
N4—C12 1.444 (4) C11—H111 0.9	9900
N4—C11 1.463 (4) C11—H112 0.9	.9900
N4—C13 1.470 (4) C12—H121 0.9	.9900
C1—C2 1.393 (4) C12—H122 0.9	.9900
C1—C6 1.397 (4) C13—H131 0.9	.9900
C1—C7 1.507 (4) C13—H132 0.9	9900
C2—C3 1.380 (4)	
H11—O1—H12 105 (2) N1—C7—H72 108	08.7
H21—O2—H22 103 (2) H71—C7—H72 107	07.6
C7—N1—C12 111.5 (2) N2—C8—N1 109	09.7 (2)
C7—N1—C8 113.9 (2) N2—C8—H81 109	09.7
C12—N1—C8 107.5 (2) N1—C8—H81 109	09.7
C7—N1—C10 108.0 (2) N2—C8—H82 109	09.7
C12—N1—C10 107.67 (19) N1—C8—H82 109)9.7
C8—N1—C10 108.0 (2) H81—C8—H82 108	08.2
C8—N2—C9 109.4 (2) N2—C9—N3 112	12.2 (2)
C8—N2—C13 109.9 (2) N2—C9—H91 109	09.2
C9—N2—C13 108.7 (2) N3—C9—H91 109	09.2
C10—N3—C9 108.8 (2) N2—C9—H92 109	09.2
C10—N3—C11 108.6 (2) N3—C9—H92 109	09.2
C9—N3—C11 108.3 (2) H91—C9—H92 107	07.9
C12—N4—C11 109.4 (2) N3—C10—N1 110	10.7 (2)
C12—N4—C13 109.0 (2) N3—C10—H101 109	09.5
C11—N4—C13 109.3 (2) N1—C10—H101 109)9.5
C2—C1—C6 117.2 (2) N3—C10—H102 109)9.5
C2-C1-C7 123.1 (2) N1-C10-H102 109	09.5
C6—C1—C7 119.7 (2) H101—C10—H102 108	08.1
C3—C2—C1 121.6 (2) N4—C11—N3 111	11.5 (2)
C3—C2—I 116.74 (19) N4—C11—H111 109	09.3
C1—C2—I 121.55 (19) N3—C11—H111 109	09.3
C4—C3—C2 119.7 (3) N4—C11—H112 109	09.3

С4—С3—Н3	120.2	N3—C11—H112	109.3
С2—С3—Н3	120.2	H111—C11—H112	108.0
C3—C4—C5	120.7 (3)	N4—C12—N1	110.6 (2)
С3—С4—Н4	119.6	N4—C12—H121	109.5
C5—C4—H4	119.6	N1-C12-H121	109.5
C6—C5—C4	119.0 (3)	N4—C12—H122	109.5
С6—С5—Н5	120.5	N1—C12—H122	109.5
С4—С5—Н5	120.5	H121—C12—H122	108.1
C5—C6—C1	121.7 (2)	N2	111.0 (2)
С5—С6—Н6	119.1	N2-C13-H131	109.4
С1—С6—Н6	119.1	N4—C13—H131	109.4
C1—C7—N1	114.4 (2)	N2-C13-H132	109.4
С1—С7—Н71	108.7	N4—C13—H132	109.4
N1—C7—H71	108.7	H131—C13—H132	108.0
C1—C7—H72	108.7		
C6—C1—C2—C3	2.2 (4)	C13—N2—C9—N3	58.9 (3)
C7—C1—C2—C3	179.2 (2)	C10—N3—C9—N2	60.1 (3)
C6—C1—C2—I	-174.31 (19)	C11—N3—C9—N2	-57.7 (3)
C7—C1—C2—I	2.6 (4)	C9—N3—C10—N1	-58.4 (3)
C1—C2—C3—C4	-0.4 (4)	C11—N3—C10—N1	59.3 (3)
I—C2—C3—C4	176.3 (2)	C7—N1—C10—N3	-178.5 (2)
C2—C3—C4—C5	-1.2 (4)	C12—N1—C10—N3	-57.9 (3)
C3—C4—C5—C6	0.9 (4)	C8—N1—C10—N3	57.9 (3)
C4—C5—C6—C1	1.0 (4)	C12—N4—C11—N3	61.0 (3)
C2—C1—C6—C5	-2.5 (4)	C13—N4—C11—N3	-58.2 (3)
C7—C1—C6—C5	-179.6 (3)	C10—N3—C11—N4	-60.8 (3)
C2—C1—C7—N1	101.8 (3)	C9—N3—C11—N4	57.2 (3)
C6—C1—C7—N1	-81.3 (3)	C11—N4—C12—N1	-59.5 (3)
C12—N1—C7—C1	75.0 (3)	C13—N4—C12—N1	59.9 (3)
C8—N1—C7—C1	-46.9 (3)	C7—N1—C12—N4	175.9 (2)
C10—N1—C7—C1	-166.8 (2)	C8—N1—C12—N4	-58.6 (3)
C9—N2—C8—N1	59.6 (3)	C10-N1-C12-N4	57.6 (3)
C13—N2—C8—N1	-59.8 (3)	C8—N2—C13—N4	61.1 (3)
C7—N1—C8—N2	-178.0 (2)	C9—N2—C13—N4	-58.7 (3)
C12—N1—C8—N2	57.9 (3)	C12—N4—C13—N2	-60.6 (3)
C10—N1—C8—N2	-58.0 (3)	C11—N4—C13—N2	58.9 (3)
C8—N2—C9—N3	-61.2 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1—H11…Br	0.77 (3)	2.53 (3)	3.297 (4)	172 (3)
O1—H12···N3 ⁱ	0.77 (3)	2.72 (3)	3.390 (5)	146 (4)
O2—H21…Br	0.78 (3)	2.61 (3)	3.381 (4)	168 (4)
O2—H22···Br ⁱⁱ	0.79 (3)	2.65 (3)	3.433 (4)	174 (3)
C3—H3····I ⁱⁱⁱ	0.95	3.31	4.237 (4)	166
C5—H5···Br ^{iv}	0.95	3.05	3.924 (4)	153
C6—H6…N4 ^v	0.95	2.73	3.558 (5)	146

C7—H72···Br	0.99	2.99	3.872 (4)	149
C8—H82···O1 ^v	0.99	2.78	3.640 (5)	145
C9—H91···O2 ^{vi}	0.99	2.40	3.326 (5)	156
C10—H101…Br	0.99	2.97	3.875 (4)	153
C10—H102···O2 ^{vii}	0.99	2.47	3.459 (5)	174
C12—H121···O1 ^v	0.99	2.78	3.643 (5)	146
C12—H122…Br	0.99	3.07	3.952 (4)	149
C13—H131…O1 ^v	0.99	2.56	3.481 (5)	154

Symmetry codes: (i) -x, -y+1, -z; (ii) -x, -y, -z+1; (iii) -x+1, -y+2, -z+1; (iv) x+1, y, z; (v) -x+1, -y+1, -z; (vi) x, y+1, z-1; (vii) -x, -y+1, -z+1.

Fig. 2